The aquatic environment has broad rehabilitative potential, extending from the treatment of acute injuries through health maintenance in the face of chronic diseases, yet it remains an underused modality. There is an extensive research base supporting aquatic therapy, both within the basic science literature and clinical literature. This article describes the many physiologic changes that occur during immersion as applied to a range of common rehabilitative issues and problems. Because of its wide margin of therapeutic safety and clinical adaptability, aquatic therapy is a very useful tool in the rehabilitative toolbox. Through a better understanding of the applied physiology, the practitioner may structure appropriate therapeutic programs for a diverse patient population.

INTRODUCTION

Since the earliest recorded history, water has always been believed to promote healing and has therefore been widely used in the management of medical ailments. Through observation and centuries of trial and error, and scientific methodology, traditions of healing through aquatic treatments have evolved. This review will detail the current scientific understanding of the many physiologic changes that occur during aquatic immersion. Aquatic immersion has profound biological effects, extending across essentially all homeostatic systems. These effects are both immediate and delayed and allow water to be used with therapeutic efficacy for a great variety of rehabilitative problems. Aquatic therapies are beneficial in the management of patients with musculoskeletal problems, neurologic problems, cardiopulmonary pathology, and other conditions. In addition, the margin of therapeutic safety is wider than that of almost any other treatment milieu. Knowledge of these biological effects can aid the skilled rehabilitative clinician to create an optimal treatment plan, through appropriate modification of aquatic activities, immersion temperatures, and treatment duration.

REHABILITATION HISTORY

Historically, the field of Physical Medicine viewed hydrotherapy as a central treatment methodology. In 1911, Charles Leroy Lowman, the founder of the Orthopaedic Hospital in Los Angeles, which later became Rancho Los Amigos, began using therapeutic tubs to treat spastic patients and those with cerebral palsy after a visit to the Spaulding School for Crippled Children in Chicago, where he observed paralyzed patients exercising in a wooden tank. On returning to California, he transformed the hospital’s lily pond into 2 therapeutic pools [1]. At Warm Springs, Georgia, Leroy Hubbard developed his famous tank, and in 1924, Warm Springs received its most famous aquatic patient, Franklin D. Roosevelt. A wealth of information, research, and articles on spa therapy and pool treatments appeared in professional journals during the 1930s. At Hot Springs, Arkansas, a warm swimming pool was installed for special underwater physical therapy exercises and pool treatment treatments with chronic arthritic patients [2]. By 1937, Dr. Charles Leroy Lowman published his Technique of Underwater Gymnastics: A Study in Practical Application, in which he detailed aquatic therapy methods for specific underwater exercises that “carefully regulated dosage, character, frequency, and duration for remedying bodily deformities and restoring muscle function” [3]. During the 1950s, the National Foundation for Infantile Paralysis supported
the corrective swimming pools, and hydrogymnastics of Charles L. Lowman and the therapeutic use of pools and tanks for the treatment of poliomyelitis. In 1962, Dr. Sidney Licht and a group of physiatrists organized the American Society of Medical Hydrology and Climatology, which historically met at the annual meeting of the American Academy of Physical Medicine and Rehabilitation.

THE PHYSICAL PRINCIPLES OF WATER

Nearly all the biological effects of immersion are related to the fundamental principles of hydrodynamics. These principles should be understood to make the medical application process more rational. The essential physical properties of water that effect physiologic change are density and specific gravity, hydrostatic pressure, buoyancy, viscosity, and thermodynamics.

Density

Although the human body is mostly water, the body's density is slightly less than that of water and averages a specific gravity of 0.974, with men averaging higher density than women. Lean body mass, which includes bone, muscle, connective tissue, and organs, has a typical density near 1.1, whereas fat mass, which includes both essential body fat plus fat in excess of essential needs, has a density of about 0.9 [4]. Highly fit and muscular men tend toward specific gravities greater than one, whereas an unfit or obese man might be considerably less. Consequently, the human body displaces a volume of water weighing slightly more than the body, forcing the body upward by a force equal to the volume of the water displaced, as discovered by Archimedes (287?-212 BC).

Hydrostatic Pressure

Pressure is directly proportional to both the liquid density and to the immersion depth when the fluid is incompressible. Water exerts a pressure of 22.4 mm Hg/ft of water depth, which translates to 1 mm Hg/1.36 cm (0.54 in.) of water depth. Thus a human body immersed to a depth of 48 inches is subjected to a force equal to 88.9 mm Hg, slightly greater than normal diastolic blood pressure. Hydrostatic pressure is the force that aids resolution of edema in an injured body part.

Hydrostatic pressure effects begin immediately on immersion, causing plastic deformation of the body over a short period. Blood displaces cephalad, right atrial pressure begins to rise, pleural surface pressure rises, the chest wall compresses, and the diaphragm is displaced cephalad.

Buoyancy

A human with specific gravity of 0.97 reaches floating equilibrium when 97% of his or her total body volume is submerged. As the body is gradually immersed, water is displaced, creating the force of buoyancy, progressively offloading immersed joints. With neck-depth immersion, only about 15 lb of compressive force (the approximate weight of the head) is exerted on the spine, hips, and knees. A person immersed to the symphysis pubis has effectively offloaded 40% of his or her body weight, and when further immersed to the umbilicus, approximately 50%. Xiphoid immersion offloads body weight by 60% or more, depending on whether the arms are overhead or beside the trunk. Buoyancy may be of great therapeutic utility. For example, a fractured pelvis may not become mechanically stable under full body loading for a period of many weeks. With water immersion, gravitational forces may be partially or completely offset so that only muscle torque forces act on the fracture site, allowing active assisted range-of-motion activities, gentle strength building, and even gait training. Similarly, a lower extremity patient with weight-bearing restrictions may be placed in an aquatic depth where it is nearly impossible to exceed those restrictions.

Viscosity

Viscosity refers to the magnitude of internal friction specific to a fluid during motion. A limb moving relative to water is subjected to the resistive effects of the fluid called drag force and turbulence when present. Under turbulent flow conditions, this resistance increases as a log function of velocity. Viscous resistance increases as more force is exerted against it, but that resistance drops to 0 almost immediately on cessation of force because there is only a small amount of inertial moment as viscosity effectively counteracts inertial momentum. Thus, when a person rehabilitationing in water feels pain and stops movement, the force drops precipitously as water viscosity damps movement almost instantaneously. This allows enhanced control of strengthening activities within the envelope of patient comfort [5].

Thermodynamics

Water’s heat capacity is 1,000 times greater than an equivalent volume of air. The therapeutic utility of water depends greatly on both its ability to retain heat and its ability to transfer heat energy. Water is an efficient conductor, transferring heat 25 times faster than air. This thermal conductive property, in combination with the high specific heat of water, makes the use of water in rehabilitation very versatile because water retains heat or cold while delivering it easily to the immersed body part. Water may be used therapeutically over a wide range of temperatures (Figure 1). Cold plunge tanks are often used in athletic training at temperatures of 10°–15°C to produce a decrease in muscle pain and speed recovery from overuse injury, although there are some contradictory studies regarding this [6-8]. Most public and competitive pools operate in the range of 27°–29°C, which is often too cool for general rehabilitative populations, because these populations are usually less active in the water. Typical therapy pools operate in the range of 33.5°–35.5°C, temperatures that permit lengthy immersion durations and exercise activities sufficient to produce therapeutic effects without chilling or overheating. Hot tubs are usually maintained at
37.5°–41°C, although the latter temperature is rarely comfortable for more than a few minutes, and even the lower typical temperature does not allow for active exercise.

Heat transfer begins immediately on immersion, and as the heat capacity of the human body is less than that of water (0.83 versus 1.00), the body equilibrates faster than water does.

APPLICATIONS IN CARDIOVASCULAR AND CARDIOPULMONARY REHABILITATION

Because an individual immersed in water is subjected to external water pressure in a gradient, which within a relatively small depth exceeds venous pressure, blood is displaced upward through the venous and lymphatic systems, first into the thighs, then into the abdominal cavity vessels, and finally into the great vessels of the chest cavity and into the heart. Central venous pressure rises with immersion to the xiphoid and increases until the body is completely immersed [9]. There is an increase in pulse pressure as a result of the increased cardiac filling and decreased heart rate during thermoneutral or cooler immersion [10,11]. Central blood volume increases by approximately 0.7 L during immersion to the neck, a 60% increase in central volume, with one-third of this volume taken up by the heart and the remainder by the great vessels of the lungs [9]. Cardiac volume increases 27%–30% with immersion to the neck [12]. Stroke volume increases as a result of this increased stretch. Although normal resting stroke volume is about 71 mL/beat, the additional 25 mL resulting from immersion equals about 100 mL, which is close to the exercise maximum for a sedentary deconditioned individual on land and produces both an increase in end-diastolic volume and a decrease in end-systolic volume [13]. Mean stroke volume thus increases 35% on average during neck depth immersion even at rest. As cardiac filling and stroke volume increase with progress in immersion depth from symphysis to xiphoid, the heart rate typically drops and typically at average pool temperatures the rate lowers by 12%–15% [14,15]. This drop is variable, with the amount of decrease dependent on water temperature. In warm water, heart rate generally rises significantly, contributing to yet a further rise in cardiac output at high temperatures [16,17].

During aquatic treadmill running, oxygen consumption (VO\(_2\)) is 3 times greater at a given speed of ambulation (53 m/min) in water than on land, thus a training effect may be achieved at a significantly slower speed than on land [18-20]. The relationship of heart rate to VO\(_2\) during water exercise parallels that of land-based exercise, though water heart rate averages 10 beats/min less, for reasons discussed elsewhere [9]. Metabolic intensity in water, as on land, may be predicted from monitoring heart rate.

Cardiac output increases by about 1,500 mL/min during clavicle depth immersion, of which 50% is directed to increased muscle blood flow [17]. Because immersion to this depth produces a cardiac stroke volume of about 100 mL/beat, a resting pulse of 86 beats/min produces a cardiac output of 8.6 L/min and is already producing an increased cardiac workload. The increase in cardiac output appears to be somewhat age-dependent, with younger subjects demonstrating greater increases (up 59%) than older subjects (up only 22%) and is also highly temperature-dependent, varying directly with temperature increase, from 30% at 33°C to 121% at 39°C [17,21].

During immersion to the neck, decreased sympathetic vasoconstriction reduces both peripheral venous tone and systemic vascular resistance by 30% at thermoneutral temperatures, dropping during the first hour of immersion and lasting for a period of hours thereafter [9]. This decreases end-diastolic pressures. Systolic blood pressure increases with increasing workload, but generally is approximately 20% less in water than on land [17]. Most studies show either no change in mean blood pressure or a drop in pressures during immersion in normal pool temperatures. Sodium-sensitive hypertensive patients have been noted to show even greater drops (−18 to −20 mm Hg) than normotensive patients, and sodium-insensitive patients smaller drops (−5 to −14 mm Hg) [22]. Based on a substantial body of research, aquatic therapy in pool temperatures between 31°–38°C appears to be a safe and potentially therapeutic envi-

![Figure 1. Immersion temperatures for rehabilitative issues.](image-url)
environment for both normotensive and hypertensive patients, in contrast to widespread belief as manifested by public signage. Recent research has generally supported the use of aquatic environments in cardiovascular rehabilitation after infarct and ischemic cardiomyopathy. Japanese investigators studied patients with severe congestive heart failure (mean ejection fractions 25 ± 9%), under the hypothesis that in this clinical problem, the essential pathology was the inability of the heart to overcome peripheral vascular resistance. They reasoned that because exposure to a warm environment causes peripheral vasodilatation, a reduction in vascular resistance and cardiac afterload might be therapeutic. During a series of studies, these researchers found that during a single 10-min immersion in a hot water bath (41°C), both pulmonary wedge pressure and right atrial pressure dropped by 25%, whereas cardiac output and stroke volume both increased [23,24]. In a subsequent study of patients using warm water immersion or sauna bath one to 2 times per day, 5 days per week for 4 weeks, they found improvement in ejection fractions of nearly 30% accompanied by reduction in left ventricular end-diastolic dimension, along with subjective improvement in quality of life, sleep quality, and general well-being [25]. Studies of elderly individuals with systolic congestive heart failure during warm water immersion found that most such individuals demonstrated an increase in cardiac output and ejection fractions during immersion [26,27]. Caution is prudent when working with individuals with severe valvular insufficiency, because cardiac enlargement may mechanically worsen this problem during full immersion. Swiss researchers have studied individuals with more severe heart failure and concluded that aquatic therapy also is probably not safe for individuals with very severe or uncontrolled failure, or very recent myocardial infarction [28-30]. That said, a recent summary of published research in this areas has concluded that aquatic and thermal therapies may be a very useful rehabilitative technique in individuals with mild to moderate heart failure [31]. It is entirely reasonable however to conclude that uncompensated congestive failure or very recent myocardial infarction should be a contraindication to aquatic therapy, to hot tub exposure and perhaps even to deep bathing. Programs typically used include aerobic exercise at light to moderate levels in a neutral temperature environment. See the clinical decision-making algorithm by Bücking and colleagues (Figure 2) [30].

Applications in Respiratory and Athletic Rehabilitation

The pulmonary system is profoundly affected by immersion of the body to the level of the thorax. Part of the effect is due to shifting of blood into the chest cavity, and part is due to compression of the chest wall itself by water. The combined
effect is to alter pulmonary function, increase the work of breathing, and change respiratory dynamics. Vital capacity decreases by 6%-9% when comparing neck submersion to controls submerged to the xiphoid with about half of this reduction due to increased thoracic blood volume, and half due to hydrostatic forces counteracting the inspiratory musculature [32,33]. The combined effect of all these changes is to increase the total work of breathing when submerged to the neck. The total work of breathing at rest for a tidal volume of 1 liter increases by 60% during submersion to the neck. Of this increased effort three-fourths is attributable to redistribution of blood from the thorax, and the rest to increased airway resistance and increased hydrostatic force on the thorax [32,34-36]. Most of the increased work occurs during inspiration. Because fluid dynamics enter into both the elastic workload component as well as the dynamic component of breathing effort, as respiratory rate increases turbulence enters into the equation. Consequently there must be an exponential workload increase with more rapid breathing, as during high level exercise with rapid respiratory rates.

Inspiratory muscle weakness is an important component of many chronic diseases, including congestive heart failure and chronic obstructive lung disease [37]. Because the combination of respiratory changes makes for a significantly challenging respiratory environment, especially because respiratory rates increase during exercise, immersion may be used for respiratory training and rehabilitation. For an athlete used to land-based conditioning exercises, a program of water-based exercise results in a significant workload demand on the respiratory apparatus, primarily in the muscles of inspiration [36]. Because inspiratory muscle fatigue seems to be a rate- and performance-limiting factor even in highly trained athletes, inspiratory muscle strengthening exercises have proven to be effective in improving athletic performance in elite cyclists and rowers [38-59]. The challenge of inspiratory resistance posed during neck-depth immersion could theoretically raise the respiratory muscular strength and endurance if the time spent in aquatic conditioning is sufficient in intensity and duration to achieve respiratory apparatus strength gains. This theory is supported by research finding that competitive women swimmers adding inspiratory training to conventional swim training realized no improvement in inspiratory endurance compared to the conventional swim trained controls, as these aquatic athletes had already achieved a ceiling effect in respiratory training [60]. These results have been confirmed by more recent studies at the University of Indiana and the University of Toronto [61,62]. The author has had a number of elite athletes comment on this phenomenon when returning to land-based competition after a period of intense water-based aquatic rehabilitation sufficient to strengthen the respiratory musculature. The common response is a perception of easier breathing at peak exercise levels, effects similar to the studies quoted in elite cyclists and cyclists. This is not surprising in view of the data existing on competitive swimmers who routinely train in the aquatic environment [60-68]. Comparative studies of young swimmers have consistently shown a larger lung capacity (both vital capacity and total lung capacity) and improved forced expiratory capacity, and a number of studies have also shown improvement in inspiratory capacity [60,62,64,66,68-73].

Respiratory strengthening may be a very important aspect of high level athletic performance, as demonstrated in some of the studies above. When an athlete begins to experience respiratory fatigue, a cascade of physiologic changes follows. The production of metabolites, plus neurologic signaling through the sympathetic nervous system, sends a message to the peripheral arterial tree to shunt blood from the locomotor musculature [38,74-76]. With a decline in perfusion of the muscles of locomotion, the rate of fatigue increases quite dramatically [39,75]. A considerable body of literature supports the plasticity of the respiratory musculature to strengthening with appropriately designed exercise in various disease conditions, although not specifically through aquatic activity [41,55,57,58,62,77-82]. Respiratory muscle weakness, especially in the musculature of inspiration, has been found in chronic heart failure patients and this weakness is correlated closely with cardiac function and may be a significant factor in the impaired exercise capacity seen in individuals with chronic heart failure [83-87]. Because the added work of respiration during immersion occurs almost entirely during the inspiratory phase, it is intriguing to speculate that a period of inspiratory muscle strengthening through immersed activity might improve exercise capacity in these individuals, but this has not been studied to date.

Aquatic therapy may be very useful in the management of patients with neuromuscular impairment of the respiratory system, such as is seen in spinal cord injury and muscular dystrophy [88-91]. A lengthy study of swimming training on cardiorespiratory fitness in individuals with spinal cord injuries was done in the late 1970s in Poland. The authors found a 442% increase in fitness levels, as contrasted with a 77% increase seen in patients with spinal cord injury in a standard land-based training program over the same period [92]. A review in 2006 concluded that respiratory muscle training tended to improve expiratory muscle strength, vital capacity, and residual volume in individuals with spinal cord injury, but that insufficient data were available to make conclusions concerning the effects on inspiratory muscle strength, respiratory muscle endurance, quality of life, exercise performance and respiratory complications [93].

Programs typically used include chest-depth aerobic activity for general rehabilitation populations usually at therapy pool temperatures. For chronic obstructive pulmonary disease patients, depth should start at waist level, and progress into deeper water as strength and respiratory tolerance improves. A simple technique for expiratory muscular exercise uses a 1” PVC tube 16” in length, with the patient blowing out into the water with the end of the tube submerged, beginning with the tube end 2-3 feet below water surface and progressing deeper as strength builds. This can be quantified as a measure of expiratory force increase, both by measuring depth of the tube end and number of full exhalations completed.
APPLICATIONS IN MUSCULOSKELETAL REHABILITATION

Water immersion causes significant effects on the musculoskeletal system. The effects are caused by the compressive effects of immersion as well as reflex regulation of blood vessel tone. During immersion, it is likely that most of the increased cardiac output is redistributed to skin and muscle rather than to the splanchnic beds [94]. Resting muscle blood flow has been found to increase from a dry baseline of 1.8 mL/min/100 g tissue to 4.1 mL/min/100 g tissue with neck immersion. With muscle blood flow increased 225% above dry land flow, even higher than the rise in cardiac output during immersion, it is therefore reasonable to conclude that oxygen availability to muscles is significantly increased during immersion at rest [95]. Blood flow during exercise is likely enhanced as well and there is research that supports this supposition, finding a 20% increase in blood flow in sedentary middle-aged subjects subjected to 12 weeks of swim training [96].

The hydrostatic effects of immersion, possibly combined with temperature effects, have been shown to significantly improve dependent edema and subjective pain symptoms in patients with venous varicosities [97]. Similarly, a rehabilitation program of hydrotherapy using contrasting temperatures produced subjective improvement, systolic blood pressure increases in the extremities, and significant increases in ambulation in patients with intermittent claudication [98-102]. Where peripheral circulation is severely compromised, it is prudent to maintain immersion temperatures at a level below those potentially increasing metabolic demand that cannot be met by available circulation (ie, below thermoneutrality [37°C]).

An aquatic exercise program may be designed to vary the amount of gravity loading by using buoyancy as a counterforce. For acute injury, such as tibial stress fracture, programs typically should start at non–weight-bearing depths, limiting activity below pain onset, and progressing in weight bearing and exercise levels as symptoms permit. Rehabilitative programs for specific joints may be more effective as either closed or open kinetic chain programs. Shallow-water vertical exercises generally approximate closed chain exercise, albeit with reduced joint loading because of the counterforce produced by buoyancy. Deep water exercises more generally approximate an open chain system, as do horizontal exercises, such as swimming. Paddles and other resistive equipment tend to close the kinetic chain. Aquatic programs, however, offer the ability to damp the force of movement instantaneously because of the viscous properties of water. Offloading of body weight occurs as a function of immersion, but the water depth chosen may be adjusted for the amount of loading desired [103]. The spine is especially well protected during aquatic exercise programs, which facilitates early rehabilitation from back injuries [104-108]. Spine rehabilitation programs will typically include aquatic spinal stabilization techniques as well as an aerobic component of exercise activity. The former is best done with a therapist in the water one-on-one with the patient.

Arthritis and Fibromyalgia

Aquatic exercise has been studied extensively in individuals with arthritis as well as fibromyalgia patients. The physiology behind efficacy remains enigmatic, but improvements in joint mobility and reductions in pain have been extensively reported [109-113]. Acute joint symptoms may respond to warm water immersion and gentle active or active assisted range of motion, whereas subacute or chronic arthritis often responds to more active exercise regimens [114-116]. The YMCA Arthritis Exercise program has been found effective in reducing disability and improving functional fitness and strength in older adults with arthritis and these programs are widely available in many communities [117,118]. Numerous studies of fibromyalgic patients have demonstrated reduction in pain, improvement in sleep patterns, fibromyalgia impact, mood state disorders, and when compared with land-based exercise programs, the aquatic groups typically showed faster and larger gains, with longer post-study improvements [119-129]. Typical programs for fibromyalgia include both deep-water flotation assisted exercise, and chest depth aerobic exercise programs, but programs such as Ai Chi, an aquatic equivalent of Tai Chi have been found to be effective as well.

APPLICATIONS IN ATHLETIC TRAINING

There is a substantial volume of literature that supports the potential value of using aquatic exercise as a cross-training mode [130-133]. Much of the literature dealing with deep-water running with flotation belts concludes that skill levels determine maximal oxygen consumption, but that training levels can easily be achieved equal to land-based training [102,131-138]. It does need to be recognized that while aquatic cross training can present a very significant aerobic challenge to the athlete, there are differences in motor activity, muscle recruitment and cardiovascular performance [137]. While there are some significant differences in cardiovascular function, the overall cardiac demand appears to be at the least, equivalent [100-102]. For maintenance of cardiorespiratory conditioning in highly fit individuals, water running equals dry land running in its effect on maintenance of maximum VO₂ when training intensities and frequencies are matched for training periods of up to 6 weeks, currently the longest published training studies [139-141]. Similarly, when aquatic exercise is compared with land-based equivalent exercise in effect on maximum VO₂ gains in un-fit individuals, aquatic exercise is seen to achieve equivalent results, and when water temperature is below thermoneutral (37°C), the gains achieved are usually accompanied by a lower heart rate [142]. Thus, water-based exercise programs may be used effectively to sustain or increase aerobic conditioning in athletes who need to keep weight off a joint, such as when in injury recovery or during an intensive training program in which joint or bone microtrauma is likely with exclusively land-based training. Although research has shown aquatic exercise to be at least the equivalent in aerobic training value to land-based training, a key question frequently raised is...
whether aquatic exercise programs have sufficient specificity to provide a reasonable training venue for athletes in this situation [100-102,143,144]. A study by Kilgore and co-workers specifically addressed the issue of running kinematics during deep water running as compared with treadmill running and found a very close comparison between the 2 when using a cross-country skiing pattern with respect to knee and ankle kinematics, whereas high-kick running styles did not match the treadmill kinematics [145]. A 2006 study assessed aquatic training in plyometric performance, finding comparable performance improvement to land plyometric training but with reduced post-training muscle soreness, and of course decreased joint loading [146]. It is unlikely that aquatic training can substantially improve dry land performance in coordination skills such as hurdles, high jump, or other complex coordination activities, where reflex timing becomes a major part of the performance success. But for many athletic activities, aquatic cross-training can sustain or even build aerobic fitness, with the side benefits of reduced joint loading, decreased muscle soreness and improved performance, and a significant potential for improved respiratory function. Programs typically used for vertical water exercise include buoyancy-assisted deep water running and cross-country skiing, aquatic treadmill running, waist-depth aqua-running, and upper extremity work using resistive devices in cool pool environments.

APPLICATIONS IN GERIATRIC AND OSTEOPOROSIS REHABILITATION

Aquatic exercise has been successfully used to improve balance and coordination in older individuals, who face an increased risk of falling. A 2008 study assessed different forms of aquatic exercise in a group of older subjects, finding that deep-water running had statistical advantage over typical chest-depth aquatic exercise in reducing balance sway and that both exercise forms improved reaction distance and that both exercise forms improved reaction time and movement speed [147]. The hypothesis was that an open chain exercise such as a deep-water program would add an additional balance challenge to the closed chain exercises typically done. An earlier study assessing aquatic exercise in people with lower extremity arthritis found statistically significant reductions of 18%-30% in postural sway after 6 weeks of closed chain training [148]. It may be concluded that both open and closed chain exercise in the aquatic environment can produce significant gains in balance, with some evidence that the former adds increased challenge. Whether these gains lead to a reduction in falls remains an open question, although rehab programs are typically built around this hypothesis and a recent Cochrane review supports the belief [149]. Aquatic balance-building programs will typically use techniques such as Ai Chi, Yoga-lates (a hybrid aquatic yoga/Pilates program), and balance drills in waist-depth water.

Because aquatic exercise, whether through swimming or vertical water exercise is either limited or non–weight-bearing, the question has long existed as to its value in the development of significant bone mineral stores, and in the management of osteoporosis. These are really 2 separate questions. In young men and women, bone mineral content develops as a function of growth in body mass and bone loading. There has been extensive study of the effects of various types of exercise on bone growth and mineral content in the early years of life in men and women, both pre- and postpuberty [150-158]. The effect of exercise, both impact loading such as running and of nonimpact exercise such as cycling and swimming appears to clearly favor impact-loading exercise in both young men and women. This advantage appears to hold through early adulthood as measured in elite competitive athletes [151,159-165]. There does seem to be a slight difference between men and women during these later competitive years, with men building slightly more bone than women [150,151,159,165,166]. Even in later years, the athletes have greater bone mineral content than nonathletic controls, which demonstrates the value of early-life athletic activity, especially for women who are at greater risk for osteoporosis. The youthful swimmers in most of these studies seem to have higher bone mineral content than nonexercising controls, but generally less than athletes practicing gymnastics, cheerleading, or similar activities.

The question of the role of aquatic exercise in later years, especially for women at risk for osteoporosis is more problematic. Bravo et al studied a group of postmenopausal women for more than a year, with participants performing a specially created aquatic exercise routine emphasizing impact loading, such as jumping and landing in waist-depth water. Although they found a great many positive changes in the study group, including improvements in functional fitness, specifically flexibility, agility, strength/endurance, cardiorespiratory endurance, and gains in psychological well-being, they did not find an increase in either spine or femoral neck bone mineral density as measured through dual-energy X-ray absorptiometry (DEXA) scanning, although femoral neck mineral content did not decrease over the year [167]. A Turkish study did find gains in calcaneal bone density after a 6-month study of aquatic exercise in a group of 41 postmenopausal women, but did not study either the spine or femoral neck, both areas of major concern for osteoporotic fractures [168]. A Japanese study of postmenopausal women did find that active exercisers preserved better forearm bone mineral density than nonexercisers, with high-impact activity preserving better than low impact such as swimming, but again did not study sites of particular concern for fractures [169]. Aquatic exercise does have a fitness role in women at risk for or with osteoporosis as there is considerable data that such programs can build strength and endurance, and there is generally an accompanying improvement in balance skills, self-efficacy, and well-being [104,109,110,112,113,117,123,124,167,170-177]. Because of the safety of aquatic exercise, the risk of injury during the exercise period is extremely small, and a fall, should it occur, will generally only cause a person to get their hair wet. Thus it is quite reasonable to begin an active exercise regimen in the pool, either through swimming or vertical exercise. When feasible, tran-
sition to a land-based exercise regimen that does involve more impact loading should follow as it remains likely that aquatic exercise alone will not provide a major osteogenic stimulus.

RELEVANT THERMOREGULATORY EFFECTS AND PREGNANCY

The 2 major compensatory mechanisms that assist cooling in warm air temperatures are peripheral vasodilatation combined with increased cardiac output. These mechanisms work to counterpurposes in warm water (greater than 37°C), because they facilitate heat gain when the surrounding environment does not allow evaporative and radiant cooling. Immersion at 40°C (104°F), which is a common hot tub temperature, produces a rectal (core) temperature rise which equates to approximately 0.1°F/minute of immersion [178]. This is not a problem in the neurologically intact human, as somatic awareness warns when core temperature rises much beyond a degree centigrade or even less. But when alcohol or other drugs alter awareness, there is a serious risk of hyperthermia in a relatively brief period. There is also a risk when the metabolic ability of the tissues to respond is impaired, such as in vascular insufficiency.

Pregnancy creates a special problem, as small rises of core temperature (1.5°C) have been noted to alter the growth of fetal neuronal tissue, although in the study quoted, the temperature increases were the result of infectious processes, which may not be entirely relevant to short-term warm water immersion [178]. There have been no reports of fetal abnormalities associated with short low-level increases in core temperature lower than 38.9°C [180]. In general, pregnant women are quite sensitive to core temperature elevations, and usually depart the hot tub well before core temperature increases are near teratogenic levels [180]. McMurray et al have demonstrated the safe maintenance of core temperature during pregnancy when performing aquatic exercise in 30°C water [181-184]. A prudent guideline might be to limit hot tub immersion in 40°C tubs to periods of less than 15 minutes for pregnant women. Aquatic exercise at conventional pool temperatures has been shown to be safe during all trimesters of pregnancy, and facilitate aerobic conditioning, while reducing joint loading [185]. Aquatic exercise at conventional temperatures has also been shown to improve amniotic fluid production, which may be a useful side effect [186]. Typical prenatal programs should include cool to neutral temperature pool aerobic exercise at chest or deeper depth, along with spinal stabilization drills.

APPLICATIONS IN PAIN AND PSYCHIATRIC REHABILITATION

Many effects have been observed anecdotally throughout centuries of aquatic environment use for health maintenance and restoration but they are difficult to study. Predominant among these are the relaxation effect of water immersion and the effect that water immersion has on pain perception. Skin sensory nerve endings are stimulated. Both animal and human studies suggest that sensory overflow may be the mechanism by which pain is less well perceived when the affected body part is immersed in water [187,188]. Pain modulation is consequently affected with a rise in pain threshold, which increases with temperature and water turbulence, producing the proposed therapeutic effect of agitated whirlpool immersion [189,190]. Numerous studies of pain in persons with fibromyalgia have shown statistically significant improvement in pain and function [119,120,122,127,129]. A 1998 study of postoperative pain found warm water immersion treatments to reduce pain and possibly promote wound healing [189].

Studies have shown that aquatic exercise reduces anxiety scores and increases perceived well-being, equal to or superior to the effects noted with land exercise activity [190,191]. Heart rate variability can be analyzed to assess the impact of respiration and autonomic nervous system activity. During relaxation states, heart rate variability demonstrates an autonomic bias toward vagal or parasympathetic nervous system control, whereas during stressed states, sympathetic nervous system influence predominates and heart rate variability decreases [192,193]. The heart rate variability pattern seen during immersion is that of vagal or parasympathetic control, indicating perhaps an inherent bias toward the relaxation state [194]. In work done in the author’s laboratory studying heart rate variability, peripheral circulation and core temperature during cool, neutral, and warm water immersion in both younger (ages 18-30) and older (ages 40-65) subjects [195], the authors found a dramatic decrease in sympathetic nervous system activity during warm water immersion, but less so during neutral immersion and an increase in sympathetic bias during cool water immersion. During warm water immersion, the authors also found a significant increase in sympathovagal balance, the interplay between the 2 components of the autonomic nervous system. Both groups of subjects responded similarly, although the older group had a more muted response. During the same study, the authors found consistent decreases in diastolic blood pressures and dramatically increased distal circulation. Aquatic therapy techniques for pain management may include Watsu, an aquatic technique derived from Shiatsu massage and Bad Ragaz, a floating technique focusing on carefully controlled movement and breathing, and gently progressive strengthening combined with aerobic exercise.

APPLICATIONS IN OBESITY REHABILITATION

Aquatic exercise would seem to offer the safest and most protective environment for obese individuals because of the buoyancy effects of immersion, which minimizes the risk of joint injury. With body weight reduced to essentially negligible levels, the immersed individual can exercise vigorously and is capable of producing increases in VO₂max over relatively short periods [196]. Aquatic exercise programs may be highly beneficial in the restoration of fitness in obese patients because of the protective effects against heavy joint loading in
the aquatic environment. On dry land, the ability to achieve an aerobic exercise level for sufficient time to produce a conditioning effect may be difficult in this population, and a program that begins in water and moves to land as strength, endurance, and tolerance builds may be a more effective method of achieving both conditioning and weight loss. A 2006 study compared the effects of a land-based aerobic exercise program with a swimming group and a water-walking group of obese subjects over a 13-week period and found no statistical differences between the groups, all losing weight (5.9 kg) and body fat percentages (3.7%) [197]. The advantages of aquatic exercise also include the heat conductive effects of water, which greatly reduces risk of heat stress when done in cooler pools [196,198]. Aquatic therapy programs for this population should include chest depth or deeper sustained aerobic exercise, alternated with balance and coordination drills.

CONCLUSION

Figure 3 details techniques appropriate for various populations seen in physiatry. As research demonstrates, immersing the body in water produces many physiologic effects that have been used therapeutically over centuries of medical history.

Aquatic exercise and rehabilitation remains vastly underused despite its recent increase in popularity. The health benefits of aquatic exercise have been shown to equal or surpass other forms of exercise including walking and running, finding health effects comparable to both land activities, with the potential added value of aquatic activities broader range of clinical applicability in specific populations. Review of the Cooper Clinic database of more than 40,000 men showed exercise swimmers to have less than half the mortality risk of sedentary men, and, surprisingly, approximately half the mortality risk of exercise walkers and runners [200]. All these effects are good reasons to use the aquatic environment in training and rehabilitation.

Aquatic facilities are widely available, and public acceptance is already high, so there are tremendous potential public health benefits to be achieved through programs targeted at the most costly chronic diseases: hypertension, cardiovascular disease, arthritis, and other musculoskeletal pathologies, obesity, and deconditioning. Aquatic programs for achieving fitness and restoring function may be designed for a broad range of individuals through an understanding of the fundamental principles of aquatic physics and the application of those principles to human physiology. There are unique attributes to aquatic therapy that seem to both preserve and protect health and longevity.

REFERENCES

This CME activity is designated for 1.0 AMA PRA Category 1 Credit™ and can be completed online at me.aapmr.org. Log on to www.me.aapmr.org, go to Lifelong Learning (CME) and select Journal-based CME from the drop down menu. At $10 per activity for AAPM&R members, journal CME is a cost-effective option for obtaining Category 1 CME credit!